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Abstract
Current parallelization trends in computer technology facilitates development
of the algorithms that retrieve linear approximations of the model operators and
their adjoints from ensembles of model simulations. In this study we address
the problem of obtaining exact linearizations in the presence of semi-implicit
numerics of the parent model under realistic constraints on the ensemble size.
The method is based on factorization of the model into a sequence of local and
non-local linear operators and employs prior information on the structure of the
respective sparse matrices. The performance of the method is tested using 28 per-
turbed solutions of the shallow-water equations with a moderate size (104) state
vector. Numerical experiments have shown feasibility of the approach under rel-
atively general constraints on the structure of the parent model. Because of the
substantial expense of the ensemble-based linearization, special focus is made
on the assessment of the optimal frequency of such computations within the
time intervals between data injections in typical operational systems.
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1 INTRODUCTION

Over the last several decades, ensemble methods of data
assimilation (DA) were among the major developing
trends in computational geophysical fluid dynamics. Since
the four-dimensional variational (4D-Var) technique is still
one of the most skilful DA methods (Lorenc et al., 2015;
Bannister, 2016), a lot of efforts were made to improve
4D-Var performance by combining the advantages of
4D-Var with the wealth of statistical information carried
by the ensembles (e.g., Zhang and Zhang, 2012; Kuhl et al.,
2013; Fairbairn et al., 2014; Buehner et al., 2015; Bonavita
et al., 2017). These efforts may mitigate certain disadvan-
tages of the 4D-Var, which include intrinsic instability of
the tangent linear models (TLMs) and their adjoints (AMs)
in strongly nonlinear regimes, and poor differentiability

of certain sub-grid parametrizations. While the hybrid
methods inherit benefits of both ensemble and 4D-Var
approaches, they are also subject to the costs associated
with their maintenance and development, including the
issues of development and maintenance of the TLMs and
adjoint models and their limited scalability compared to
the ensemble techniques. Although the problem of 4D-Var
development without AMs has been addressed in many
studies (e.g., Liu et al., 2008; Yaremchuk et al., 2009; 2017),
operational systems with AMs tend to provide better fore-
cast skill than the methods based on approximations of
the cost function gradients without using the AMs (Lorenc
and Jardak, 2008).

In recent years, several attempts have been made to
extract linearized representation of the model operator
from the information contained in the ensemble of model
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trajectories (Frolov and Bishop, 2016; Allen et al., 2017;
Bishop et al., 2017; Frolov et al., 2018). The approach is
different from the ones mentioned above because it does
not involve projection of the gradient on the range of the
(localized) background-error covariance or on other sub-
spaces predetermined by the model run, but attempts to
directly employ the ensemble statistics for reconstructing
(an approximation to) the TLM matrix. The underlying
assumption of the approach is that the number of ensem-
ble members is comparable to the grid-point stencil size of
the matrix representation of the linearized model opera-
tor (Bishop et al., 2017). Although numerical experiments
with a shallow-water model performed by Allen et al.
(2017) have shown promising results, extensions of the
method to more general dynamical constraints are hin-
dered by non-locality of the model numerics, often featur-
ing non-local parametrizations and implicit schemes for
filtering fast processes.

This study contributes to the methodology of the
ensemble-based linearization of the model (ELM)
operators. Specifically, we make an attempt to bypass
non-locality by factorizing the structure of a one-step
propagator into a sequence of sparse matrices utilized
later for assembling the ELM approximation that is appli-
cable for both explicit and implicit time stepping. The
algorithm is tested using a shallow-water model in a
periodic domain.

The paper is organized as follows. In the next section
we describe the model, factorization of its one-step prop-
agator, and its approximation over the finite time interval.
Setting of the numerical experiments with an idealized
model is described in Section 3. Section 4 contains the
major results, including comparison of the CPU times with
exact TLAM, skill of the respective 4D-Var experiments,
and assessment of the optimal frequency of the ELM com-
putation. Summary and discussion of further development
conclude the paper.

2 LINEAR APPROXIMATIONS
OF A NUMERICAL MODEL

2.1 Propagation of the ensemble
average

Consider an ensemble of m trajectories of a numerical
model propagating a state vector x ∈ ℝN from the kth time
step to the next one

xi
k+1 = m(xi

k); i = 1, … ,m, (1)

where m(x) is a sufficiently smooth vector-valued func-
tion of x. In the following treatment, we also assume that

the numerical model conserves a scalar property E = ⟨x, x⟩
(e.g., energy) and the ensemble spread around the mean
trajectory xk is small,

|xi
k − xk| ≡ |𝛿xi

k| ≪ |xk|, (2)

with respect to the scalar product ⟨, ⟩ introduced by the
conservation law. Consider ensemble evolution on the
time interval [t0, tn] corresponding to a typical DA win-
dow in operational systems, and assume that this inter-
val is short enough to have no sizable impact on the
ensemble spread (so that validity of Equation (2) is not
violated). Under these conditions, one-step evolution of
an ensemble member can be represented by the linear
transformation

xi
k+1 = Mi

kxi
k, (3)

where Mi
k ≡ M(xi

k) is the unitary matrix specifying rota-
tion of the ensemble member xi

k on the surface of the
energy sphere |x|2 = E. Hereinafter, we use the notation
M(x) to specify, where necessary, the vector argument x of
the respective matrix-valued functions. As the matrix ele-
ments of Mi

k depend on xi
k, they can be can be expanded

in 𝛿xi
k in the vicinity of M(xk),

M(xi
k) = M(xk) +

𝛿M
𝛿x

(xk)𝛿xi
k + … , (4)

so that the evolution of the ensemble mean can be approx-
imated by

xk+1 = M(xk)xk. (5)

Note that the “ensemble mean propagator” M(xk)
(denoted Mk hereinafter) keeps the unitary property of
Mi

k intact, and, therefore, is less susceptible to numeri-
cal instabilities than the 4D-Var TL operator M∗

k which
governs evolution of small perturbations of Equation (3),

𝛿xk+1 = M∗
k𝛿xk =

[
Mk +

𝛿M
𝛿x

(xk)xk

]
𝛿xk, (6)

and contains an additional term which may destroy the
conservative properties of Mk, resulting in TLAM instabil-
ities. These instabilities have to be suppressed by introduc-
tion of the additional diffusion (Hoteit et al., 2005), which
parameterizes the effect of the higher-order moments
of the ensemble perturbations (Yaremchuk and Martin,
2014). In the above discussed approximation Equation (5)
of the ensemble average evolution, the second term in the
r.h.s. of Equation (6) is removed via averaging over the per-
turbations. In the hybrid 4D-Var methods, the matrix M

T

could be used to update the ensemble mean and keep it
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being constrained by the conservation laws of the numeri-
cal scheme. In that respect, it would be reasonable to refer
M and M∗ as the ensemble-based linear model (ELM) and
the ensemble-based tangent linear model (ETLM). The lat-
ter notation is adopted to distinguish presented technique
from the earlier local ETLM (LETLM) method of Frolov
and Bishop (2016), which does not directly account for the
non-local structure of the constituents of M, and, there-
fore, provides a significantly less accurate approximation
to the TLM.

Since modern DA systems often treat evolution of x as
the best approximation to the truth, it is useful to develop
approximations to Mk, M∗

k and their adjoints for assess-
ment of the ensemble mean sensitivities with respect to
control variables. A formal way to do this for a large (m >

N) ensemble is to retrieve the unknown elements of the
respective matrices by solving the matrix equations (cf.
Equations (5, 6))

MkXk = Xk+1, M∗
k𝛿Xk = 𝛿Xk+1, (7)

where X stands for the N × m matrices listing the ensem-
ble members columnwise. This approach is surely pro-
hibitive, since ensembles rarely exceed 100 members in
size, while the typical values of N range within 107–109

for operational models. However, the curse of dimension-
ality could be circumvented if Mk and M∗

k are represented
by sparse matrices, whose stencil sizes (the maximum
number of non-zero elements in a row) ns do not exceed
the ensemble size m. The latter constraint appears to be
valid for the numerical models of fluid dynamics, because
these models are formulated in terms of discretized dif-
ferential operators that are local in nature and, therefore,
represented by sparse matrices. For explicit numerical
schemes the constraint ns < m could be satisfied because
most of the models employ small stencil discretizations of
the differential and locally averaging operators to approx-
imate evolution of the state vector on the model grid.
Non-zero elements of the corresponding matrices occupy
relatively compact areas in physical space, so that these
elements can, in principle, be retrieved from Equation (7)
by solving N systems of m × m linear equations if the
centres and sizes of the stencils are known, and ns

does not exceed the ensemble size (Appendix A). This
assumption was central to the development of the original
LETLM method by Frolov and Bishop (2016). However,
the numerical schemes of more realistic models often fea-
ture semi-implicit methods and integral transforms that
are non-local in nature and lead to stencil sizes ns ≫ m,
resulting in violation of the resolvability condition. Several
attempts were made to regularize the respective underde-
termined problems (e.g., Frolov et al., 2018), with limited
success.

2.2 Factorization of the one-step
propagator

In this study we explore the possibility to approxi-
mate E(T)LM operators for numerical models employ-
ing semi-implicit schemes. Assume for simplicity that the
one-step model propagator can be factorized in the form

M = L−1L0, (8)

where the (unknown) linear operators L, L0 are repre-
sented by sparse matrices which satisfy the conditions
ns,ns

0 ≤ m, and the locations/sizes of the respective sten-
cils are known. The matrix L accounts for the implicit part
of the numerical scheme and acts on the components of
xk+1. This action is usually available as a code of matrix
multiplication in the respective implicit solver of the linear
system Lxk+1 = L0xk.

The structure of M can then be implicitly obtained
through the two-step procedure involving 2N solutions
of the m × m systems of linear equations derived from
the rows of the auxiliary ensembles X∗

0 = L0X0 and X∗
1 =

LX1. The input and output ensembles X0,X∗
0,X1, X∗

1 do
not require additional computations because they can be
extracted during the ensemble run as intermediate outputs
in the appropriate places of the code. The retrieved matri-
ces L0, L can be viewed as a compressed storage form of
M, whose multiplication by an arbitrary vector x can be
executed in two steps:

• compute x′ = L0x;
• apply the model's implicit solver to the system matrix L

with the right-hand side x′ to obtain Mx.

The above algorithm can be easily generalized for a
sequence (Equation 8)) of arbitrary length n𝓁 > 2

M =
n𝓁∏
j=0

Lj, (9)

where Lj represent either sparse matrices or their inverses.
To clarify presentation, we further limit ourselves to the
case n𝓁 = 2 described by Equation (8).

The overhead expense of computing the compressed
representation (Equation 9)) consists of i/o operations for
storing nl auxiliary ensembles and the expense of solving
n𝓁N systems of m × m linear equations, which could be
costly compared to the ensemble run if M is computed
on every time step. To mitigate extra cost, the elements of
Mk can be computed on a sparser grid in both space and
time and then interpolated to the original grid to obtain an
approximation to Mx.
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Similarly, the action MT on a state vector can be accom-
plished using the reverse sequence (cf. Equation (8))

MTx = LT
0 L−Tx. (10)

Note that transposition of the factors L0, L is not compu-
tationally expensive, since both of them are directly stored
in the sparse format after their row-by-row retrieval from
the auxiliary ensembles.

2.3 Approximation of the time
evolution

In the practical 4D-Var applications, observations arrive
into the assimilation system at fixed time intervals 𝜏 j =
tkj − tkj−1 within the DA window, so that the key compo-
nent of a 4D-Var system is propagation of the model–data
misfits over the data accumulation intervals 𝜏 j by the
adjoint code. Since the number of time steps n between the
data injections could be quite large, the above-mentioned
sparsification of M may not be enough to ease the bur-
den of computing M1,…,Mn at every time step. In that
respect it might be reasonable to evolve model–data mis-
fits over 𝜏 j using the adjoint operators interpolated in time.
In many practical cases, the model state does not change
dramatically over 𝜏 j and the evolution of Mk over the
data accumulation intervals between injections can be well
approximated by a linear function

Mk =
(

1 − k
n

)
Mkj−1 +

k
n

Mkj , k = 1,…,n, (11)

which requires, in the long-term average, just one retrieval
of M from the ensemble per data accumulation interval.

Furthermore, if Mk could be represented as perturba-
tions I + 𝜀M′

k of the identity matrix I, with 𝜀 small enough
to assume that expansion of the finite-time propagator

P = Mn−1 … M1M0 = I + 𝜀

n−1∑
k=0

M′
k + 𝜀2

∑
k<l

M′
kM′

l + … (12)

converges at a reasonable rate, the lengthy time integration
over 𝜏 j could be approximated by a nonlinear function of
M′

0 and M′
n through recursive applications of the operator

M̂ = (M′
0 + M′

n)∕2:

P = I + n𝜀M̂
[
I + n𝜀

2
M̂ + …

]
. (13)

That is, instead of computing a series of intermediate
ETLMs, evolution of M over a multi-step time interval can
be approximated by the nonlinear function (Equation (13))
of the ETLMs pre-computed at the beginning and the end

of the interval. If the expansion (Equation (12)) does not
converge fast enough, time interpolation could be used
on smaller intervals within 𝜏 j to optimize the trade-in
between the computational cost and accuracy of the
approximation. In the present study, we test the efficiency
of the more simple linear approximation (Equation (11)).

In the next section we describe setting of the numer-
ical experiments used for testing the linear approxima-
tion (Equation (11)) with a nonlinear numerical model
described below.

3 EXPERIMENTAL SETTING

3.1 Numerical model

The shallow-water equations were discretized on a C-grid
to simulate dynamics of a barotropic flow on the f -plane:

𝜂t = −∇ ⋅ (h + 𝜂) u, (14)
ut = −g∇𝜂 − f k × u + (𝜈∇2 − 𝜇 − u ⋅ ∇) u. (15)

Here 𝜂 is the sea surface height, u is the horizontal veloc-
ity vector, ∇ is the gradient operator, k is the vertical unit
vector, h(x) is the ocean depth (x ∈ ℝ2), f = 10−4s−1 is the
Coriolis parameter, g = 9.8m⋅s−2 is the gravity acceleration
and 𝜇, 𝜈 are the Newtonian friction and horizontal viscos-
ity coefficients. In the horizontal, a grid step 𝛿x was 10 km
in both directions, and the periodic boundary conditions
were used.

To keep consistency with Equation (1) and layout
(Equation (8)), the time integration was performed by the
implicit Crank–Nicolson type scheme with a time step 𝛿t =
1 hr, so that the model operator M was given by

M = L−1L0 ≡

{
I + 1

2
[N(x) − Q]

}−1 [
I + 1

2
Q
]
, (16)

where N is a sparse matrix whose elements depend on x,
and Q is a sparse matrix with constant (x-independent)
elements. Details of the numerics can be found in
Appendix B.

Using the above notation, the expressions for the LM
and TLM model operators are given by (Appendix C)

M =
{

I + 1
2
[N(x) − Q]

}−1 [
I + 1

2
Q
]
≡ L

−1
L0, (17)

M∗ = M − 1
2

L
−1 𝛿N

𝛿x
(x) L

−1
L0 x. (18)

Equations (15) and (15) were discretized on a homoge-
neous 59×59 grid with the basic parameters set as follows:
𝜇 = 10−6 day−1, 𝜈 = 10−6𝛿x2∕𝛿t ∼ 1.4 × 104m2⋅s−1, and
h = 20{5 + 𝜉(x)}m, where 𝜉(x) is a realization of the
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F I G U R E 1 Bottom topography (m)

random field with zero mean, unit variance and decor-
relation scale 𝜌 = 30 km (Figure 1). Different realizations
of the same random field were also used to initialize the
ensemble of model states.

The length of the model integration (assimilation win-
dow) and the data accumulation interval 𝜏 for the experi-
ments were set to 4 days and 24 hr respectively.

The basic (ensemble mean) state x(0) at the beginning
of integration was specified as follows. The geostrophic
component xg(0) was defined by setting 𝜂g(x, 0) = 𝜂0𝜉(x)
and computing the geostrophic velocities (Figure 2). With
the value of 𝜂0 = 0.2 m, the respective geostrophic cur-
rents had typical velocities of u0 ∼ 0.9 m⋅s−1. After that,
an ageostrophic component was added, by generating
another realization of 𝜉(x) and setting 𝜂a(x, 0) = 0.1 𝜂0𝜉(x),
ua = 0.1 u0𝜉(x). With this formulation, the model trajec-
tory (Figure 2) had a substantial degree of nonlinearity: the
respective Rossby number

Ro = |u ⋅ ∇u|
f |u|

varied between 0 and 1.35 within the domain with the
average value of 0.32.

The ensemble was generated in exactly the same
manner, using different realizations of the random field
𝜉. After specification of the ensemble members, the
ensemble-mean value was subtracted from the members,
then each member was multiplied by the spread factor
𝛾 and then the basic state was added. The parameter

𝛾 was varied between 10−4 and 3 in the course of the
experiments.

Since the maximum stencil size in the discretizations
of the differential and averaging operators was 3 × 3
(Appendix B), the ensemble size was set to m = 28 mem-
bers to guarantee capturing all non-zero elements in the
rows of the matrices L0 and L factorizing M and M∗.

3.2 4D-Var setting

Performance of the TLAM approximations derived from
the ensembles was assessed in the 4D-Var environment
using a simple set of twin data assimilation experiments.
For a given assimilation window, the data (the values
of u and 𝜂 at randomly selected observation points, e.g.,
Figure 2b) were picked from the ensemble mean trajectory
and contaminated by the white noise with specified vari-
ances 𝜎𝜂, 𝜎u. These variances did not vary in space and
defined the diagonal of the observation-error covariance
matrix R. The inverse square root of the background-error
covariance matrix was specified (Xu, 2005; Yaremchuk
et al., 2013) as the block-diagonal matrix with the three
cells for each state vector component given by

B−1∕2 = 𝜌

𝛿x
D
[

I − 𝜌2

2
∇2

]
, (19)

where D is the inverse square root of the respective part
of the diagonal extracted from the ensemble covariance
matrix.

The first-guess solution was obtained from a randomly
picked ensemble member and then optimized through
minimization of the cost function

J = 1
2

[
xT

0 B−1x0 +
4∑

k=1
(HPkx0 − dk)TR−1(HPkx0 − dk)

]
(20)

with respect to the initial state x0. Here H is the identity
matrix with diagonal elements replaced by zeros at loca-
tions without data, dk are the observation vectors, and Pk
is the nonlinear model propagator from t = 0 to the kth
data injection time, separated from the initial condition by
k days. The spatial and temporal density of observations
varied between the different sets of experiments.

The minimization was performed by a quasi-
Newtonian descent algorithm featuring limited-memory
BFGS updating (Schmidt, 2005) with the gradient supplied
by

𝛿J
𝛿x0

= B−1x0 +
4∑

k=1
MT

k HR−1(HPkx0 − dk), (21)
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F I G U R E 2 Evolution of the ensemble mean total currents
(arrows) and surface elevations (colour) for the case Ro = 0.3 at (a)
time=0,days and (b) 4 days. In (b), circles denote locations of the
observation points at the end of the integration (t = 4𝜏) [Colour
figure can be viewed at wileyonlinelibrary.com].

where MT
k is either the adjoint of the exact TL propa-

gator in Equation (6), or its ELM/ETLM approximations
obtained using Equations (8), (10), and (11).

4 RESULTS

In what follows we analyze the inaccuracy A of E(T)LM
retrievals and their computational cost c. The former is

10−310−210−1100

10−8

10−6

10−4

10−2

100

ensemble spread

AX(ELM)
AX(ETLM)
AX(LM)
AX(TLM)

F I G U R E 3 Inaccuracy AX in approximating the model
evolution by the E(T)LM operators as a function of the ensemble
spread 𝛾 for the case Ro = 0.3

characterized by the parameters

Ao = ‖Oe − O‖‖O‖ , AX = ‖OeX − OX‖‖OX‖ , (22)

where ‖ ⋅ ‖ denotes the Frobenius norm and O, Oe respec-
tively stand for the exact TLM operator and the operator
retrieved from the ensemble. The computational cost c𝜏
of the operator retrievals is measured in per cent and
defined by c𝜏 = 100𝜏r∕𝜏X , where 𝜏r, 𝜏X are the CPU times
required by the operator retrieval process and by the non-
linear propagation of the ensemble over the time interval
between the retrievals, respectively.

4.1 E(T)LM approximation errors

Computation of the sparse constituents (L0 and L) of
the LM matrix M (Equation (18)) requires two solutions
of the matrix equations involving intermediate ensem-
bles dumped in the process of the ensemble integration
(Section 2.2). Since stencil sizes and locations of L0 and
L are known, and the ensemble size m is larger than
ns, respective matrix elements are retrieved exactly, so
that approximations of M and M∗ are always obtained
within the machine accuracy (Ao = 10−14). Figure 3 shows
the errors in approximating ensemble evolution by the
E(T)LM approximations of M and M∗. The curves are
visually indistinguishable from the ones obtained by prop-
agating the ensemble by the exact (T)LM operators coded
using analytical derivations (thin solid lines in Figure 3).

http://wileyonlinelibrary.com
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Equations (16) and (18) show that practical factoriza-
tion of M requires ensemble retrievals of Q and N. For
the considered dynamical system, the computational cost
of these two retrievals was close to 5.2% if they were per-
formed on every time step, with variations of 0.3% depend-
ing on the point along the model trajectory within the
assimilation window.

To assess the computational efficiency of retrieving
M∗, we first note that since the matrix elements of N are
homogeneous linear functions of x, Equation (18) can be
rewritten in the form

M∗ = M − 1
2

L
−1 𝛿N

𝛿x
M x = L

−1 [
L0 −

1
2

N(Mx)
]

(23)

and thus requires an additional retrieval of N(Mx) from
the ensemble. The respective computational expense is
mostly defined by the necessity to compute the product
of (already available) M by x followed by the ensemble
retrieval of the elements of N(Mx). This procedure adds
7.1±0.6% to c𝜏(M), resulting in the overall cost c𝜏(M∗) =
12.3 ± 0.8% for the e ETLM retrieval at every time step.

Although the values of c𝜏(M) and c𝜏(M∗) appear to be
a relatively moderate price for computing the exact LM
and TLM operators, the respective cost could be much
higher in more realistic applications. Therefore, it is worth
considering their approximations via time interpolation
(Equation (11)), an inexpensive (c𝜏(i) = 0.01%) procedure
for sparse matrices. If the retrievals are performed every
mth time step, the overall cost of computing the ETLM
operator will reduce to mc𝜏(i) + c𝜏(M∗)∕m. In that respect,
it is instructive to assess the accuracy if such interpolation
within the data acquisition interval as a function of the
number of time steps ni between the ETLM retrievals.

Figures 4 and 5 indicate that, in terms of accuracy,
time interpolation could be feasible if E(T)LM retrievals
are performed not less than two times (dt = 12𝛿t = 12 hr,
dark grey lines) per data acquisition interval. In this case
ELM and ETLM approximations are accurate within 5–7%
and 0.5–1% respectively. Performing the retrieval only
once (dt = 24𝛿t) inflates the error to tens of percent in the
case of ELM and to several percent for TLM, which could
have a strong impact on the 4D-Var descent process. In
the following section we assess this impact in a series of
numerical experiments.

4.2 4D-Var experiments

The numerical experiments were performed using two
basic ensembles. The first one (described in Section 3.1)
was characterized by the maximum and time-averaged
Rossby numbers of 1.35 and 0.32, characteristic for

F I G U R E 4 Inaccuracy AX in approximating the ensemble
mean evolution by the ELM operator interpolated in time within
the data acquisition interval (𝜏 = 24 hr). The values of the
interpolation time intervals ni are shown at the lower right

F I G U R E 5 As Figure 4, but for the ETLM operator

sub-mesoscale turbulence. The second ensemble was
generated in a similar manner, but using a three times
smaller value of 𝜂0, so that the resulting maximum and
mean Rossby numbers (0.4 and 0.1) were more typical
for the oceanic conditions observed in the regions of the
western boundary currents.

4.2.1 Benchmark runs

For each basic ensemble, we performed two bench-
mark 4D-Var assimilation experiments. The first one was
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targeted at the assessment of the optimal frequency of
the TLAM extractions from the ensembles within a sin-
gle data acquisition window. In this experiment, the data
were specified in every grid point (H = I in Equation (20))
without noise contamination (𝜎𝜂 = 𝜎u = 0) at t = 𝜏, and no
regularization was used (B−1 = 0).

The second series of 4D-Var experiments were per-
formed to assess the impact of time interpolation on the
descent process in a more realistic environment: the model
solution was optimized within the 4-day assimilation win-
dow with four data acquisitions performed at the end of
each day in four sets of random points (an example is
shown in Figure 2). The simulated observations were taken
from the “true” solution and contaminated with 10% noise
with observation and background (Equation (19)) error
covariances specified accordingly.

In both series, the optimization process was inter-
rupted at 50 iterations. The “quality” of optimization was
estimated by computing the ratio

e =
|xopt

0 − xtr
0 ||xfg

0 − xtr
0 | ,

where xfg
0 and xtr

0 are respectively the first guess and true
states at t = 0.

Figure 6 illustrates the 4D-Var performance for the
four benchmark solutions characterized by two Rossby
numbers (Ro= 0.1, 0.3) and two assimilations windows
(Figure 2). For perfect observations at the end of the data
acquisition interval (𝜏 = 1 day), the true solution is recon-
structed within the accuracy of e = 2.1 × 10−4 in 50 iter-
ations when Ro = 0.1. At higher nonlinearity (Ro = 0.3),
the convergence rate slows down (grey lines in Figure 6)
and the reconstruction error after 50 iterations increases to
e = 0.24, although after 200 iterations it becomes less than
0.1 (not shown).

A similar value of the reconstruction error e = 0.28
is obtained with noisy data and 4-day assimilation win-
dow at Ro = 0.1 (solid black line in Figure 6), while with
the higher level of nonlinearity (Ro = 0.3), only a slight
improvement of the first-guess solution is achieved in 50
iterations (e = 0.87, solid grey line).

Since the ETLM operators are reconstructed with
machine precision, the above numbers and plots remain
virtually unchanged, when the exact (analytically derived
and coded) adjoints were used in the 4D-Var computations.

4.2.2 Impact of time interpolation

The situation changes when the adjoint operators MT
k

are replaced by their approximations (Equation (11)).

1 2 3 4 5 10 20 30 50

10−4

10−3

10−2

10−1

100

iterations

J/
J 0

Ro=0.1  e=.00
Ro=0.1  e=.28
Ro=0.3  e=.24
Ro=0.3  e=.87

F I G U R E 6 Impact of observation density and model
nonlinearity on the reconstruction of the true state, showing the
reduction of the cost function J with iterations for the benchmark
4D-Var runs with various values of Ro (listed in the lower left
corner) and assimilation periods. The cost function is normalized
by its initial value J0. Errors e of approximating the true solution are
shown in the key. Solid lines correspond to a 4-day assimilation
window with noisy randomly distributed data. Dashed lines show
the reduction of J∕J0 for the 1-day run with complete observation of
the state vector at the end of the assimilation interval

Although the ETLM errors exposed in Figure 5 are gener-
ally below 1% over the data acquisition interval, they can
grow substantially at longer integration times, and, more
importantly, have a tendency to accumulate with 4D-Var
iterations.

Figures 7 and 8 demonstrate dependence of the 4D-Var
convergence rate on the time interpolation interval ni𝛿t for
the “realistic” case (4-day assimilation window with noisy
data). The overall impact of time interpolation becomes
noticeable at ni = 8𝛿t, when the improvement e of the
optimal solution drops from 0.87 to 0.91 for Ro = 0.3
(Figure 7), and from 0.29 to 0.34 Ro = 0.1 (Figure 8). For
the larger intervals between operator retrievals (ni = 12𝛿t),
the descent process quickly loses efficiency after approx-
imately ten iterations, is clearly visible in the behaviour
of both the cost function and the gradient (thick black
lines in Figure 7), and yields virtually no gain (e = 0.99)
in approximating the true solution compared to the first
guess for Ro = 0.3. For the lower nonlinearity level Ro =
0.1 (Figure 8), the loss of efficiency also becomes notice-
able at ni = 12𝛿t (thick grey lines in Figure 8), but demon-
strates a behaviour similar to Figure 7 only when the
ETLM retrievals occur at the data acquisition intervals ni =
24𝛿t, (thick black lines in Figure 8).
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(a) (b)

F I G U R E 7 Reduction of the (a) cost function and (b) gradient with iterations for 4D-Var runs with Ro = 0.3, 𝜏=4 days, and various
time interpolation intervals of the adjoint ETLM operator (listed in the lower left corners). Errors e of approximating the true solution are
shown in (a). The case labelled 1𝛿t carries no approximation caused by time interpolation of the TL operators

(a) (b)

F I G U R E 8 As Figure 7, but for Ro = 0.1

We should also note that smaller values of ni <

8𝛿t allow us to attain a considerably better (e ∼ 0.65)
approximation to the truth in the case of strong nonlin-
earity Ro = 0.3 after a considerably larger (500) number of
iterations, which is impractical, because in realistic 4D-Var
applications the descent process is terminated much ear-
lier.

A qualitatively similar behaviour of the 4D-Var
descent process has been observed in assimilation experi-
ments within the data acquisition window 𝜏 = 1 day and

perfectly observed state at t = 𝜏 (not shown). Quantita-
tively, the true solution in this case was reconstructed
with a much higher accuracy (e < 0.001 for Ro = 0.1 and
e = 0.24 for Ro = 0.3) up to the value of ni = 8𝛿t, evidently
due to the absence of noise in the observations and their
specification in every grid point at t = 𝜏. At ni = 12𝛿t,
the descent process stagnated after approximately 25 iter-
ations, but these were enough to reach the accuracy of
e = 0.03 for Ro = 0.1. At ni = 24𝛿t, stagnation occurred
after seven iterations for both levels of nonlinearity,
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producing the final inaccuracies of e = 0.33 (Ro = 0.1)
and e = 0.90 (Ro = 0.3). It is noteworthy that stagnation
of the descent process at ni = 24𝛿t at Ro = 0.1 resulted in
approximately the same reconstruction accuracy e = 0.33
as in the case when the gradient was computed using the
adjoint of the ELM model (e = 0.39).

As mentioned earlier, the case Ro = 0.1 (with the max-
imum values of Ro = 0.4) is more typical for the regions of
western boundary currents, which occupy a minor part of
the world ocean. To assess the value of ELM operator and
its adjoint in optimizing the model state in the majority
of the open ocean, a separate series of the 4D-Var exper-
iments were conducted with the nonlinearity level Ro =
0.03. As expected, the results demonstrated less efficiency
of the descent process than ETLM (thick lines in Figure 9)
and much weaker dependence on the frequency of ELM
retrievals. The latter can be explained by the fact that, at
these levels of nonlinearity, TLMs tend to stabilize and
stagnation of the descent process largely depends on the
accuracy of approximating the nonlinear state evolution
by a linear model. In that sense the ELM approxima-
tion becomes slightly disadvantageous because it is less
accurate than ETLM (Figure 3).

One may expect that, at lower levels of nonlinearity,
ELM-based 4D-Var becomes more competitive to ETLM
4D-Var due to the diminishing role of time variability of the
E(T)LM operators. The result of the experiment exposed
in Figure 9 indicates that ELM-based assimilation could
be a reasonable alternative to the ETLM-based 4D-Var,
especially if we take into the account the conservation
properties of the ELM operator retrieved from ensembles
with weak spread.

5 SUMMARY AND DISCUSSION

An Ensemble TLM (ETLM) generalization of the Local
Ensemble TLM (LETLM) technique of Frolov and Bishop
(2016) has been proposed. The method relaxes LETLM
constraint on the locality of the one-step propagator of a
numerical model by assuming that the model can be fac-
torized into a sequence of local and non-local operators,
constrained by the condition that inverses of the non-local
operators are represented by sparse matrices (Section 2.2).
The performance of the method has been tested in a
series of twin-data experiments with a 28-member ensem-
ble integration of a nonlinear semi-implicit numerical
model with 104 degrees of freedom described in Section
3. The results demonstrate that exact TLM and its adjoint
could be retrieved from the ensemble at the extra com-
putational cost of 12–15% compared to the cost of the
one-step ensemble integration (Section 4.1). It is notewor-
thy that our attempts to apply Frolov and Bishop's (2016)

F I G U R E 9 Reduction of the cost function (black lines) and
gradient (grey lines) for ELM-based and ETLM-based 4D-Var
experiments with Ro = 0.03 and 𝜏 = 1 day

LETLM technique to the semi-implicit numerics of the
model described in the paper, failed to recover a useful
approximation to M∗, even at a very small level of nonlin-
earity. This could be explained by the fact that the number
of non-zero elements ns in the rows of M and M∗ was an
order of magnitude larger than the ensemble size m due to
the presence of the inverse matrices in Equations (18) and
(18). The alternative approach was to inflate the ensem-
ble size which dramatically reduced the computational
efficiency of the LETLM retrievals.

In addition, we investigated the possibility of reduc-
ing the frequency of ETLM retrievals during the ensemble
integration by linearly interpolating the extracted opera-
tors in time between the retrievals. Results of the exper-
iments in Section 4.2 indicate that the 4D-Var optimiza-
tion process is weakly affected if ETLM retrievals are
performed less than every 12 time steps in the case of
moderate nonlinearity (Ro = 0.1) of the background solu-
tion, and less than every 6 time steps for stronger non-
linearity (Ro = 0.3). This result indicates the possibility
to considerably reduce the cost of ETLM extraction in
more realistic settings, where the stencil sizes of the sparse
matrices in the factorization can be significantly larger
than 28.

An important advantage of the ETLM technique over
LETLM is that it is capable of producing the exact TLM
matrices (and their adjoints) in the case of quadratic non-
linearity of the parent model. For higher-order nonlinear-
ities, the method could be even more advantageous, as
it may implicitly mitigate TLM instabilities by processing
the fully nonlinear ensemble perturbations, thus keeping
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intact the conservative properties of the one-step linear
approximation to the parent model.

Apart from the capability to semi-automatically extract
ETLMs from the ensembles, a significant advantage of
the technique is that it produces ETLM approxima-
tions in the form of sparse matrices, which can be effi-
ciently multiplied by the model state using standard math
libraries on high-performance massively parallel comput-
ers. Furthermore, our results indicate that the input/out-
put cost of reading the ensembles and ETLM operators
could be further reduced by employing time interpolation
(Equations (11), (13)).

Despite promising results, the presented study was
done with a simplified model, and many aspects of the
ETLM approach should be investigated before the method
could be applied to realistic models. Among those are
the proper treatment of higher-order nonlinearities and
accommodation of different types of non-local operators,
such as convolutions, projections, and other types of inte-
grals applied to the model state (and routinely used,
for example, in the mixing/radiation schemes or pres-
sure computations). In that respect, one may think of
further generalization of the approach by representing
the integrals via (pseudo)inverses of the appropriate dif-
ferential operators which can be represented by sparse
matrices.

The availability of the exact ELMs and ETLMs in the
sparse format together with ensemble statistics provides
an opportunity to impose conservation laws of the parent
model by constraining ETLMs to the respective manifold.
In applications, this has been done by adding a heuristic
diffusion term to the adjoint models (e.g., Hoteit et al.,
2005; Yaremchuk and Martin, 2014). We speculate that
this kind of regularization procedure could be done in a
more succinct way by combining ensemble statistics with
an opportunity to quickly estimate the leading spectral
components of the respective sparse matrices.

An equally important issue for ETLM methodology
is the rapid growth of the retrieval cost with the stencil
size. As an example, an ocean model with the number
nf = 4 of three-dimensional prognostic fields (tempera-
ture, salinity and two horizontal velocity components),
and the stencil half-width ns = 2 will require an ensemble
of around ns = nf (2ns + 1)3 = 4 × 125 = 500 members for
the exact retrieval of the ETLM operator. This size appears
to be close to the upper limit of the current computer
capabilities. Although the problem of ns reduction can be
mitigated to some extent by employing more information
on the stencil structure, the cost of retrieving non-zero ele-
ments in a TLM row will be at least an order in magnitude
larger than in the present study, and will become compa-
rable to the cost of the ensemble integration. However, this

expense could be reduced by the ETLM interpolation in
time and/or spatial sparsification of the retrievals.

Another interesting aspect of the ETLM methodology
is its similarity to the machine learning (ML) technique,
which extracts an unknown mapping from the training
ensemble. The difference is that ML methods are well
developed for largely unknown maps and huge ensembles
of training samples, while ETLMs operate with relatively
well-known maps and much smaller training sets. The pre-
sented study can be considered as an attempt to improve
LETLM technique by employing additional information
on the general structure of the retrieved map in the oper-
ator extraction algorithm. In that respect, the latest ML
developments in sparse recovery (Wang et al., 2018) could
improve the computational efficiency of ETLM retrievals.
One can anticipate that application of the appropriately
modified versions of the ML algorithms are able to bring
an extra benefit to ETLM development, especially in the
treatment of poorly differentiable operators (such as verti-
cal mixing schemes and cloud/convective physics) which
parametrize fast sub-grid processes in the ocean/atmo-
sphere models.

In general, we strongly believe that ETLM method-
ology, as a new branch of the ensemble DA techniques,
have a very good prospect for development within the cur-
rent parallelization trends in computer technologies which
have significantly propelled, in particular, the ML/AI tech-
niques in recent years.
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APPENDICES

A. RETRIEVING A LOCAL LINEAR
OPERATOR FROM THE ENSEMBLE

Denote non-zero elements in a jth row of M by mi, i =
1, ...ns and assume that M is local, that is, all these ele-
ments are located not farther than l grid steps from the
point x in physical space corresponding to the row under
consideration. Let nf be the number of field constituents in
the state vector and ik, k = 1, ...,nf(2l + 1)2 be the indices
enumerating global positions of the columns of M contain-
ing non-zero elements in the above-mentioned vicinity 𝜔x
of x . Then the ensemble elements xj(x) in the jth row of
the output ensemble matrix X̃ ∈ ℝN×m are given by

X̃ j =
ns∑

k=1
mik Xj

ik
, j = 1, ...,m, (A1)

where Xj
ik

are the local elements of the input ensemble
X(𝜔x) and ns = nf(2l + 1)2 is the upper limit of the sten-
cil size.

The relationships (Equation (A1))) can be considered
as a system of m linear equations with ns unknown values
of the matrix elements mik mapping the input ensemble
elements X(𝜔x) to X̃(x). The system is overdetermined if
m > ns and has a unique solution if the ensemble members
are locally linearly independent, which is usually the case.
In the present study, nf = 3 and l = 1, so that the threshold
ensemble size is m = 27.

It is necessary to note that in real applications (e.g.,
featuring upwind finite differences, or semi-Lagrangian
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advection schemes), the stencil's structure and size depend
on x, requiring additional calculations of the stencil ele-
ment locations which is not a straightforward numerical
procedure in practice. This procedure could be omitted
if a reasonably good estimate is available of the sten-
cil size, shape and position relative to the diagonal of
the system matrix. In the present study, we kept 𝜔x con-
stant, solving m × m systems of equations in every grid
point.

For 3D models, ns can be as high as several hundred.
However, this number could be reduced considerably by
more accurate accounting of the number of field depen-
dencies at a point and of the stencil shapes, which may
not, for example, contain non-zero elements in the ver-
tices/edges of the stencil cube.

B. NUMERICAL SCHEME

Adopt the units 𝛿x = 𝛿t = 1, let lx = ly be the domain size
and sx denote the lx × lx “right shift” matrix obtained from
the identity matrix i by displacing its diagonal one step to
the right and placing 1 at the bottom of the first column to
account for the periodicity. The 1D “forward” and “back-
ward” finite difference and averaging operators are then
given by

d+
x = s+x − i, d−

x = −dT
x , a+

x = (i + sx)∕2 and
a−

x = a+T
x .

Using the above notation and ⊗ for the Kroenecker
product, the lxly × lxly matrix representations of the dif-
ferential and averaging operators in two dimensions are
defined by

𝜕±x = d±
x ⊗ iy, 𝜕±y = ix ⊗ d±

y , (B1)
∇2 = (d+

x − d−
x )⊗ iy + ix ⊗ (d+

y − d−
y ), (B2)

A±
x = a±

x ⊗ iy, A±
y = ix ⊗ a±

y , (B3)
Av = A−

x A+
y , Au = A+

x A−
y . (B4)

The Crank–Nicolson scheme is specified by time-centring
the result of action by a system matrix S on a state
vector:

xk+1 − xk = 1
2
[(Sx)k+1 + (Sx)k] . (B5)

Since the system matrix S is linear in x, its action on x
can be represented in the form Sx = S0x + N′xxT, where
the entries of S0 and N′ are independent of x. Introduc-
ing the notation 𝛿x = xk+1 − xk, and assuming that |𝛿x| ≪|xk|yields the following approximation for the nonlinear

part of the r.h.s. in Equation (B5),

N′ [(xk + 𝛿x)(xk + 𝛿x)T + xkxT
k
]
≈ N′ [xkxT

k+1 + xk+1xT
k
]
.

The numerical scheme (Equation (B5)) can thus be rewrit-
ten in the form:[

I + 1
2
(Nk − Q)

]
xk+1 =

[
I + 1

2
Q
]

xk,

where

Q = −
⎡⎢⎢⎢⎣

0 𝜕+x ⟨A−
x h⟩ 𝜕+y ⟨A−

y h⟩
g𝜕−x 𝜇I + 𝜈Δ f Av
g𝜕−y −f Au 𝜇I + 𝜈Δ

⎤⎥⎥⎥⎦ ,
Nk =

[ Z 𝜕+x ⟨A−𝜂k⟩ 𝜕+y ⟨A−𝜂k⟩
0 U ⟨𝜕c

yuk⟩Av
0 ⟨𝜕c

xvk⟩Au V

]
.

Here 𝜕c = (𝜕+ + 𝜕−)∕2 is the central difference operator,
and the following notations are adopted:

⟨w⟩ = diag(w), I = i ⊗ i,
Z = 𝜕+x ⟨uk⟩A−

x + 𝜕+y ⟨vk⟩A−
y , (B6)

U = ⟨𝜕c
xuk⟩ + ⟨uk⟩𝜕c

x + ⟨Avvk⟩𝜕c
y , (B7)

V = ⟨𝜕c
yvk⟩ + ⟨vk⟩𝜕c

y + ⟨Auuk⟩𝜕c
x . (B8)

C. THE TANGENT LINEAR OPERATOR

By definition, the tangent linear model M∗ is linearization
of M(x)x in the vicinity of x:

M∗𝛿x =
[
M + 𝛿M

𝛿x
x
]
𝛿x. (C1)

In the above equation and hereinafter, the derivatives are
taken at x.

Using the notation of Section 3.1 (Equation (16)) and
the relationships

𝛿L−1L
𝛿x

= 𝛿L−1

𝛿x
L + L−1 𝛿L

𝛿x
= 0, 𝛿L

𝛿x
= 1

2
𝛿N
𝛿x

,

the second term in Equation (C1) can be rearranged in the
form

𝛿M
𝛿x

x = 𝛿L−1L0

𝛿x
x = 𝛿L−1

𝛿x
L0x

= −L
−1 𝛿L

𝛿x
L
−1

L0x = −1
2

L
−1 𝛿N

𝛿x
L
−1

L0x. (C2)
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Substitution of the r.h.s. from Equation (C2) into (C1)
yields the expression for M∗ in Equation (18):

M∗ = M − 1
2

L
−1 𝛿N

𝛿x
L
−1

L0x. (C3)

In this study, the matrix elements of N are linear in
x (Equations (5)–(B8)). As a consequence, the product of
𝛿N∕𝛿x by an arbitrary vector a is the value of N at a:

𝛿N
𝛿x

a = N(a). (C4)

Assuming that a = L
−1

L0x ≡ Mx in Equation (C3), and
taking Equation (C4) into account, Equation (18) takes the
form Equation (23).


